Tumor suppressor protein kinase Chk2 is a mediator of anoikis of intestinal epithelial cells.
نویسندگان
چکیده
Resistance of carcinoma cells to anoikis, apoptosis that is normally induced by detachment of nonmalignant epithelial cells from the extracellular matrix, is thought to be critical for carcinoma progression. Molecular mechanisms that control anoikis of nonmalignant and cancer cells are understood poorly. In an effort to understand them we found that detachment of nonmalignant intestinal epithelial cells triggers upregulation of Chk2, a pro-apoptotic protein kinase that has never been implicated in anoikis and has been thought to kill cells mainly under the conditions compromising genome integrity. We found that enforced downregulation of Chk2 protects intestinal epithelial cells from anoikis. Chk2 can kill cells by stabilizing p53 tumor suppressor protein or via p53-independent mechanisms, and we established that Chk2-mediated anoikis of intestinal epithelial cells is p53-independent. We further found that, unlike nonmalignant intestinal epithelial cells whose anoikis is triggered by detachment-induced Chk2 upregulation, intestinal epithelial cells carrying oncogenic ras, a known inhibitor of anoikis, remain anoikis-resistant in response to enforced Chk2 upregulation. By contrast, drugs, such as topoisomerase I inhibitors, that can kill cells via Chk2-indpendent mechanisms, efficiently triggered anoikis of ras-transformed cells. Thus, oncogenic ras can prevent Chk2 from triggering anoikis even when levels of this protein kinase are elevated in cancer cells, and the use of therapeutic agents that kill cells in a Chk-2-independent, rather than Chk-2-dependent, manner could represent an efficient strategy for overcoming ras-induced anoikis resistance of these cells. We conclude that Chk-2 is an important novel component of anoikis-promoting machinery of intestinal epithelial cells.
منابع مشابه
The Role of chk2 in Response to DNA Damage in Cancer Cells
Accumulation of gene changes and chromosomal instability in response to cellular DNA damage lead to cancer. DNA damage induces cell cycle checkpoints pathways. Checkpoints regulate DNA replication and cell cycle progression, chromatin restructuring, and apoptosis. Checkpoint kinase 2 (chk2) is activated in response to DNA lesions. ATM phosphorylate chk2. The activated Chk2 kinase can phosphoryl...
متن کاملThe Role of Adiponectin in Prostate Cancer: A Narrative Review
Prostate cancer (PCa) is the most common type of cancer among men over 60 years old. The aggressiveness and mortality of PCa can be correlated with obesity. Adipose tissue-derived cytokines such as adiponectin may explain the correlation between PCa and obesity. Since the correlation between adiponectin and aggressive PCa is still not fully evaluated, we aimed to investigate the probable role o...
متن کاملDNA damage-activated kinase Chk2 is independent of proliferation or differentiation yet correlates with tissue biology.
The Chk2 kinase is a tumor suppressor and key transducer of DNA-damage checkpoints. We show that the human Chk2 protein is relatively stable, nuclear, and responding to gamma-radiation throughout the cell cycle. Contrary to the retinoblastoma protein-regulated, labile Chk1 kinase restricted to S-G(2) phases, Chk2 remains activatable even in quiescent and differentiating cells. In human tissues,...
متن کاملOncogenic ras-induced down-regulation of pro-apoptotic protease caspase-2 is required for malignant transformation of intestinal epithelial cells.
Resistance of carcinoma cells to anoikis, apoptosis that is normally induced by loss of cell-to-extracellular matrix adhesion, is thought to be essential for the ability of these cells to form primary tumors, invade adjacent tissues, and metastasize to distant organs. Current knowledge about the mechanisms by which cancer cells evade anoikis is far from complete. In an effort to understand thes...
متن کاملTumor suppressor CHK2: regulator of DNA damage response and mediator of chromosomal stability.
CHK2 is a multiorgan tumor susceptibility gene that encodes for a serine/threonine protein kinase involved in the response to cellular DNA damage. After ATM-mediated phosphorylation, the activated Chk2 kinase can act as a signal transducer and phosphorylate a variety of substrates, including the Cdc25 phosphatases, p53, PML, E2F-1, and Brca1, which has been associated with halting the cell cycl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of cancer
دوره 131 2 شماره
صفحات -
تاریخ انتشار 2012